Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Phononic waveguides (PnWGs) are devices with rationally designed periodic structures to manipulate mechanical oscillations and to engineer and control the propagation of acoustic waves, thus allowing for frequency and band selection of wave transmission and routing, promising for both classical and quantum transduction on chip-scale platforms with various constituent materials of interest. They can be incorporated into both electromechanical and optomechanical signal transduction schemes. Here, we present an overview of emerging micro/nanoscale PnWGs and offer perspectives for future. We evaluate the typical structural designs, frequency scaling, and phononic band structures of the PnWGs. Material choices, fabrication techniques, and characterization schemes are discussed based on different PnWG designs. For classical transduction schemes, an all-phononic integrated circuit perspective is proposed. Toward emerging quantum applications, the potential of utilizing PnWGs as universal interfaces and transduction channels has been examined. We envision PnWGs with extraordinary propagation properties, such as nonreciprocity and active tunability, can be realized with unconventional design strategies (e.g., inverse design) and advanced materials (e.g., van der Waals layered crystals), opening opportunities in both classical and quantum signal transduction schemes.more » « less
-
Free, publicly-accessible full text available February 1, 2026
-
Mahmoud Amouzadeh Tabrizi (Ed.)Agriculturally derived biowastes can be transformed into a diverse range of materials, including powders, fibers, and filaments, which can be used in additive manufacturing methods. This review study reports a study that analyzes the existing literature on the development of novel materials from agriculturally derived biowastes for additive manufacturing methods. A review was conducted of 57 selected publications since 2016 covering various agriculturally derived biowastes, different additive manufacturing methods, and potential large-scale applications of additive manufacturing using these materials. Wood, fish, and algal cultivation wastes were also included in the broader category of agriculturally derived biowastes. Further research and development are required to optimize the use of agriculturally derived biowastes for additive manufacturing, particularly with regard to material innovation, improving print quality and mechanical properties, as well as exploring large-scale industrial applications.more » « less
-
Abstract We report the experimental demonstration of temperature compensated bilayer graphene two‐dimensional (2D) nanomechanical resonators operating in temperature range of 300 to 480 K. By using both microspectroscopy and scanning spectromicroscopy techniques, spatially visualized undriven thermomechanical motion is conveniently used to monitor both the resonance frequency and temperature of the device via noise thermometry while the device is photothermally agitated. Thanks to engineerable naturally integrated temperature compensation of the graphene and gold clamps that minimize variations of built‐in tension in a wide temperature range, very small linear TCfs of ≈−39 and −84 ppm K−1are achieved in the graphene nanomechanical resonators. The measured TCfs are orders of magnitude smaller than those in other 2D resonant nanoelectromechanical systems (NEMS). The intricately coupled thermal tuning and strain effects are further examined, elucidating that TCfcan be further improved by optimizing device dimensions, which can be exploited for engineering highly stable NEMS resonators and oscillators for signal transduction and sensing applications.more » « less
An official website of the United States government
